INTRODUCTION

The study of geometry can be broken into two broad types, plane geometry, which deals with only two dimensions, and solid geometry which allows all three dimensions.

Surface: In geometry, the boundary of any three dimensional solid.

Plane geometry

Solid geometry

Cylinder

Sphere

Cone

Pyramid

Plane: A plane is a surface such that if any two points are taken on it, the line joining them lies wholly on the surface.

Note: Every equation of the first degree in x, y, z represents a plane.
The equation to every plane is of the first degree in x, y, z.

Normal form of the plane

Let the equation to the plane be $a x+b y+c z+d=0, a^{2}+b^{2}+c^{2} \neq 0$
We can take $d \geq 0$ or $d \leq 0$.
The normal form of the equation to the given plane is
$\pm \frac{a x}{\sqrt{a^{2}+b^{2}+c^{2}}} \pm \frac{b y}{\sqrt{a^{2}+b^{2}+c^{2}}} \pm \frac{c z}{\sqrt{a^{2}+b^{2}+c^{2}}}=\mp \frac{d}{\sqrt{a^{2}+b^{2}+c^{2}}}(d \geq 0$ or $d \leq 0)$
Distance of the origin from the plane $a x+b y+c z+d=0$ is $\frac{|d|}{\sqrt{a^{2}+b^{2}+c^{2}}}$.
First degree equation in x, y, z without constant term \Leftrightarrow plane is passing through the origin.

Consider the equation $\mathrm{l} x+m y+n z=\mathrm{p}(\mathrm{l} \neq 0, m \neq 0, n \neq 0)$ of a plane direction cosines of a normal to it are $1, m, n$.

plane

Angle between two planes

Angles between two planes

Angles between two planes $a_{1} x+b_{1} y+c_{1} z=d_{1}, a_{2} x+b_{2} y+c_{2} z=d_{2}$ are equal to the angles between their normals.
$\theta=\cos ^{-1}\left(\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}+c_{1}{ }^{2}} \sqrt{a_{2}{ }^{2}+b_{2}{ }^{2}+c_{2}{ }^{2}}}\right)$, the other angle between the planes is $180^{\circ}-\theta$

- The planes are perpendicular if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
- The two planes are parallel if $a_{1}: a_{2}=b_{1}: b_{2}=c_{1}: c_{2}$
- The equation of the plane parallel to $a x+b y+c z+d=0$ is $a x+b y+c z+k=0$ The equation of the plane through the point $\left(x_{1}, y_{1}, z_{1}\right)$ and parallel to the plane $a x+b y+c z+d=0$ is $a x+b y+c z+d=a_{1} x+b_{1} y+c_{1} z$.
- Equation of the plane making intercepts $\mathrm{a}, \mathrm{b}, \mathrm{c}$ on the coordinate axes is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$

Parallel planes

Perpendicular planes

The equation of the plane through the point $\left(x_{1}, y_{1}, z_{1}\right)$ and perpendicular to the line with d.rs. $(\mathrm{a}, \mathrm{b}, \mathrm{c})$ is $a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0$.

Perpendicular Distance of a point from the Plane

The distance of $\left(x_{1}, y_{1}, z_{1}\right)$ from the plane $a x+b y+c z+d=0$ i.e., the length of the perpendicular from the point to the plane is $\frac{\left|a x_{1}+b y_{1}+c z_{1}\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}$.

Distance between parallel planes
Distance between parallel planes $a x+b y+c z+d_{1}=0, a x+b y+c z+d_{2}=0$ is

$$
\frac{\left|d_{1}-d_{2}\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

Problems

1. Find the equation of the plane through $(4,4,0)$ and perpendicular to the planes

$$
x+2 y+2 z=5 \text { and } 3 x+3 y+2 z-8=0
$$

Sol: The equation of the plane passing through the given point $(4,4,0)$ with d.rs. a,b,c is $a(x-4)+b(y-4)+c(z-0)=0$
it is perpendicular to the plane $x+2 y+2 z=5$ and $3 x+3 y+2 z-8=0$
$a+2 b+2 c=0,3 a+3 b+2 c=0$ by solving these two equations we get $a=-2, b=4, c=-3$
The equation of the plane is $-2(x-4)+4(y-4)-3 z=0$
$2 x-4 y+3 z+8=0$
2. Find the angles between the planes $2 x-3 y-6 z=6,6 x+3 y-2 z=18$

Sol: let θ be one of the angles between the given planes

$$
\therefore \theta=\cos ^{-1}\left(\frac{2(6)-3 * 3-6 *(-2)}{\sqrt{4+9+36 \sqrt{36+9+4}}}\right)
$$

$$
\theta=\cos ^{-1}\left(\frac{14}{59}\right)
$$

The other angle between the planes is $180-\cos ^{-1}\left(\frac{14}{59}\right)$
3. Show that the equation of the plane through the points $(2,2,-1),(3,4,2),(7,0,6)$
is $5 x+2 y-3 z-17=0$
Sol: The equation of the plane passing through the point $(2,2,-1)$ with d.rs.a,b,c is

$$
a(x-2)+b(y-2)+c(z+1)=0
$$

since it passes through the points $(3,4,2),(7,0,6)$
$a+2 b+3 c=0,5 a-2 b+6 c=0$
by solving these two equations we will get the equation of the plane is $5 \mathrm{x}+2 \mathrm{y}-$ $3 z-17=0$.
4. A plane meets the coordinate axes $\mathrm{A}, \mathrm{B}, \mathrm{C}$. If the centroid of $\triangle A B C$ is (a, b, c).

Show that the equation to the plane is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=3$.
Sol: The equation of the planes which meets the coordinate axes at
$\mathrm{A}=\left(x_{1}, 0,0\right), B=\left(y_{1}, 0,0\right), C=\left(z_{1}, 0,0\right)$ is $\frac{x}{x_{1}}+\frac{y}{y_{1}}+\frac{z}{z_{1}}=1 \cdots(1)$
The centroid of $\triangle A B C(a, b, c)=\left(\frac{x_{1}}{3}, \frac{y_{1}}{3}, \frac{z_{1}}{3}\right)$.
Then $x_{1}=3 \mathrm{a}, y_{1}=3 \mathrm{~b}, z_{1}=3 \mathrm{c}$
by substituting in (1) we get $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=3$
5. Prove that the distance between parallel planes $2 x-2 y+z+3=0,4 x-4 y+$ $2 z+5=0$ is $1 / 6$.

Sol: the given planes are $2 x-2 y+z+3=0,2 x-2 y+z+5 / 2=0$
the distance is $\frac{|3-5 / 2|}{\sqrt{4+4+1}}=\frac{1 / 2}{3}=1 / 6$

Planes bisecting the angles between two planes

Co-Planar

Perpendicular: dot product zero

Mountain Fold

Obtuse angle:
dot product negative

$$
\pi_{1}=a_{1} x+b_{1} y+c_{1} z+d_{1}=0, \pi_{2}=a_{2} x+b_{2} y+c_{2} z+d_{2}=0 \text { and } d_{1} d_{2}>0 .
$$

Equation to the plane bisecting the angle containing the origin between the planes is

$$
\frac{a_{1} x+b_{1} y+c_{1} z+d_{1}}{\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}+c_{1}{ }^{2}}}=+\frac{a_{2} x+b_{2} y+c_{2} z+d_{2}}{a_{2}{ }^{2}+b_{2}{ }^{2}+c_{2}{ }^{2}} d_{1}>0, d_{2}>0, d_{1}<0, d_{2}<0
$$

And to the plane bisecting the other angle between the planes is
$\frac{a_{1} x+b_{1} y+c_{1} z+d_{1}}{\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}+c_{1}{ }^{2}}}=-\frac{a_{2} x+b_{2} y+c_{2} z+d_{2}}{a_{2}{ }^{2}+b_{2}{ }^{2}+c_{2}{ }^{2}} d_{1}>0, d_{2}>0, d_{1}<0, d_{2}<0$

- If $d_{1}>0, d_{2}<0$ or $d_{1}<0, d_{2}>0$

Equation to the plane bisecting the angle containing the origin between the planes is
$\frac{a_{1} x+b_{1} y+c_{1} z+d_{1}}{\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}+c_{1}{ }^{2}}}=-\frac{a_{2} x+b_{2} y+c_{2} z+d_{2}}{a_{2}{ }^{2}+b_{2}{ }^{2}+c_{2}{ }^{2}}$
And to the plane bisecting the other angle between the planes is

$$
\frac{a_{1} x+b_{1} y+c_{1} z+d_{1}}{\sqrt{{a_{1}^{2}}^{2}+{b_{1}^{2}}^{2}+{c_{1}}^{2}}}=+\frac{a_{2} x+b_{2} y+c_{2} z+d_{2}}{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}
$$

